Закон Ома

Материал из ВикиЭнерго
Перейти к: навигация, поиск

Зако́н Ома — это физический закон, определяющий связь между напряжением, силой тока и сопротивлением проводника в электрической цепи. Назван в честь его первооткрывателя Георга Ома. Суть закона проста: сила тока в проводнике прямо пропорциональна напряжению между концами проводника, если при прохождении тока свойства проводника не изменяются. Следует также иметь в виду, что закон Ома является фундаментальным и может быть применён к любой физической системе, в которой действуют потоки частиц или полей, преодолевающие сопротивление. Его можно применять для расчёта гидравлических, пневматических, магнитных, электрических, световых, тепловых потоков и т. д., также, как и Правила Кирхгофа, однако, такое приложение этого закона используется крайне редко в рамках узко специализированных расчётов.

Ток, А Напряжение, В Сопротивление, Ом Мощность, Вт
I U R P

Содержание

История закона Ома

Георг Ом, проводя эксперименты с проводником, установил, что сила тока I в проводнике пропорциональна напряжению U, приложенному к его концам:

1f1560124db256846ebb4e7a72cb9ea6.jpg

или

F1faebfdffb2698d3f97cfa7673f2918.jpg.

Коэффициент пропорциональности A4745b3db5b0c52d8fc318335e14dc32.jpg назвали электропроводностью, а величину B32f4dbd18876c7a594b32c82c30042d.jpg принято именовать электрическим сопротивлением проводника.

Закон Ома был открыт в 1827 году.

Закон Ома в интегральной форме

Схема, иллюстрирующая три составляющие закона Ома. Изображение получено с сайта Википедии
Диаграмма, помогающая запомнить закон Ома. Нужно закрыть нужную величину, и два других символа дадут формулу для ее вычисления. Изображение получено с сайта Википедии


Закон Ома для участка электрической цепи имеет вид:

U = R I

где:

  • U — напряжение или разность потенциалов,
  • I — сила тока,
  • R — сопротивление.

Закон Ома также применяется ко всей цепи, но в несколько изменённой форме:

Bf6731a3faed3178a4cdbeb40626924c.jpg,

где:

Закон Ома в дифференциальной форме

Сопротивление R зависит как от материала, по которому течёт ток, так и от геометрических размеров проводника. Полезно переписать закон Ома в так называемой дифференциальной форме, в которой зависимость от геометрических размеров исчезает, и тогда закон Ома описывает исключительно электропроводящие свойства материала. Для изотропных материалов имеем:

2d7f217cb3001702462bc7899c77c37c.jpg

где:

Все величины, входящие в это уравнение, являются функциями координат и, в общем случае, времени. Если материал анизотропен, то направления векторов плотности тока и напряжённости могут не совпадать. В этом случае удельная проводимость является тензором ранга (1, 1).

Раздел физики, изучающий течение электрического тока в различных средах, называется электродинамикой сплошных сред.

Закон Ома для переменного тока

Если цепь содержит не только активные, но и реактивные компоненты (ёмкости, индуктивности), а ток является синусоидальным с циклической частотой ω, то закон Ома обобщается; величины, входящие в него, становятся комплексными:

88bb6989aa09306b100f79324a9b3a7b.jpg

где:

  • U = U0eiωt — напряжение или разность потенциалов,
  • I — сила тока,
  • Z = Reiδ — комплексное сопротивление (импеданс),
  • R = (Ra2+Rr2)1/2 — полное сопротивление,
  • Rr = ωL — 1/ωC — реактивное сопротивление (разность индуктивного и емкостного),
  • Rа — активное (омическое) сопротивление, не зависящее от частоты,
  • δ = —arctg Rr/Ra — сдвиг фаз между напряжением и силой тока.

При этом переход от комплексных переменных в значениях тока и напряжения к действительным (измеряемым) значениям может быть произведен взятием действительной или мнимой части (но во всех элементах цепи одной и той же!) комплексных значений этих величин. Соответственно, обратный переход строится для, к примеру, 86769657647.jpg подбором такой 617595129512e8caec7341105c1ab851.jpg, что 4f6d0cac05356629ca0b87d056d00d78.jpg. Тогда все значения токов и напряжений в схеме надо считать как 4e106c42d146b7d7801f995db285fdbc.jpg

Если ток изменяется во времени, но не является синусоидальным (и даже периодическим), то его можно представить как сумму синусоидальных Фурье-компонент. Для линейных цепей можно считать компоненты фурье-разложения тока действующими независимо.

Также необходимо отметить, что закон Ома является лишь простейшим приближением для описания зависимости тока от разности потенциалов и для некоторых структур справедлив лишь в узком диапазоне значений. Для описания более сложных (нелинейных) систем, когда зависимостью сопротивления от силы тока нельзя пренебречь, принято обсуждать вольт-амперную характеристику. Отклонения от закона Ома наблюдаются также в случаях, когда скорость изменения электрического поля настолько велика, что нельзя пренебрегать инерционностью носителей заряда.

Объяснение закона Ома

Закон Ома можно просто объяснить при помощи теории Друде

13470b8570894bf2e15f5cfd8225a7c4.jpg

См. также


Первоначальная версия этой статьи была взята из русской Википедии на условиях лицензии GNU FDL.Авторы: http://ru.wikipedia.org/w/index.php?title=Закон_Ома&action=history
Личные инструменты
Пространства имён
Варианты
Действия
Навигация
Инструменты